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Abstract

A series of poly [2-(dimethylamino)ethyl methacrylate (DMA)-sodium acrylate (SA)] diblock copolymers were syn-
thesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization exhibits
controlled characters: well-controlled molecular weight, narrow molecular weight distribution, molecular weight
increasing with polymerization time. The zwitterionic diblock copolymers show rich solution behaviors. Dynamic light
scattering (DLS) indicated the formation of micelles and reverse micelles of copolymers is affected by net charge density
of copolymers. Microcalorimetry studies showed that the lower critical solution temperature (LCST) increases with

incorporation of hydrophilic segments in buffer.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Zwitterionic block copolymers has received interests
because they are not only considered as synthetic ana-
logues of biological macromolecules such as proteins
and nucleotides, but also have the potential applications
such as drag reduction [1], sewage treatment, protein
isolation and purification [2], emulsion formulations
[3]. Since Stille’s group first reported the synthesis of
zwitterionic block copolymers using anionic polymeriza-
tion in the early 1970s [4,5], much effort has focused on
the synthesis and aqueous solution behaviors of zwitter-
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ionic block copolymers [6-11]. In 1994, Patrickios et al.
[12,13] reported the synthesis of diblock, triblock and
statistical methacrylic block copolymers utilizing group
transfer polymerization (GTP) [14]. Armes et al.
[15,16] synthesized diblock copolymers of 2-(dimethyl-
amino)ethyl methacrylate (DMA) with methacrylic acid
(MAA) using GTP. Because the monomers suitable for
anionic polymerization and GTP are limited, it is obvi-
ous that the usable monomers are greatly increased by
introduction of radical polymerization into the prepara-
tion of zwitterionic block copolymers. The recent devel-
opments in controlled free radical polymerization
techniques allow for synthesis of zwitterionic block
copolymers. The first synthesis of zwitterionic block
copolymers via controlled radical polymerization was
reported by Gabaston et al., who described the TEM-
PO-mediated polymerization [17] to prepare block
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copolymers comprising of sodium 4-styrenesulfonate
and DMA [18]. Donovan et al. [19-21] prepared a series
of zwitterionic block copolymers via reversible addition-
fragmentation chain transfer (RAFT) polymerization
[22-25]. Armes et al. have reported the synthesis of
new class of zwitterionic block copolymers [26-28] using
atom transfer radical polymerization (ATRP) [29,30].
However, a facile synthesis of well-defined zwitterionic
block copolymers is a challenge utilizing controlled free
radical polymerization techniques without protecting
group chemistry [31].

In this work, we synthesized a series of diblock zwit-
terionic copolymers which comprise of weakly basic
PDMA block and weakly acidic acrylic acid block (acid-
ified sodium acrylate) using RAFT polymerization with-
out using protecting group chemistry. The self-assembly
configuration of these kinds diblock copolymers were
studied in extra-stimuli such as pH and temperature
through dynamic light scattering (DLS) and micro-
calorimetry.

2. Experimental section
2.1. Materials

2-(dimethylamino) ethyl methacrylate (DMA, 98%)
was purchased from Aldrich, o-methylstyrene (98%)
and acrylic acid (98%) were purchased from Shanghai
Chemical reagents Co., each of these monomers was dis-
tilled under reduced pressure prior to use. Sodium acry-
late (SA) was prepared according to the procedure
described by Annenkov et al. [32]. NV,N-azobis (isobuty-
ronitrile) (AIBN, 98%) was recrystallized from ethanol
and dried at room temperature in vacuum oven. Tetra-
hydrofuran (THF) was distilled from a purple sodium
solution prior to use. Absolute diethyl ether was treated
with 98% concentrated sulfuric acid and distilled. Other
materials were used as received.

2.2. Synthesis of RAFT agents

2.2.1. Synthesis of dithiobenzoic acid (DTBA)
Dithiobenzoic acid was prepared according to the
method described by Bai et al. [33]. The Grignard re-
agent reacted with carbon disulfide in dry THF (30 ml)
at —5°C for 1 h. The mixture was decomposed with
ice-cold dilute hydrochloric acid (100 ml). The organic
layer was separated and extracted with ice-cold 10% so-
dium hydroxide solution (50 ml x 3). The alkaline solu-
tion was washed with diethyl ether three times and
acidified with ice-cold 10% hydrochloric acid solution,
finally extracted with diethyl ether. The ether solution
was washed with distilled water three times. After evap-
oration of the solvent, pure DTBA was obtained in

40.2% yield. 'TH NMR (300 MHz, CDCl3) § (ppm): 6.5
(s, 1H, —C(C=S)SH), 7.0-7.9 (m, 5H, aromatic H).

2.2.2. Synthesis of cumyl dithiobenzoate (CDB) [34]

A mixture of DTBA (5.059 g, 0.036 mol), a-methyl-
styrene (4.017 g, 0.040 mol) and carbon tetrachloride
(40 ml) was heated at 70 °C for 5 h. The resultant mix-
ture was reduced to crude oil that was purified by silica-
gel column chromatography using n-hexane as eluent.
The pure CDB was 47.3% yield as dark purple oil. 'H
NMR (300 MHz, CDCl3) ¢ (ppm): 2.00 (s, 6H), 7.20—
7.60 (m, 8H), and 7.84 (m, 2H).

2.3. Polymerization

A mixture of DMA, RAFT agent, AIBN and anisole
(DMA:anisole = 1:2 (v/v)) was added to 5 ml ampoule
with a magnetic stirring bar. The mixture was degassed
by freeze—vacuum-thaw cycle three times. Then, the am-
poule was sealed under vacuum, and immersed in oil
bath thermostated at 80 °C for a predetermined time.
Then, the ampoule was opened; the reaction mixture
was added into excess of n-hexane. The polymer PDMA
was precipitated, filtered and dried in a vacuum oven at
40 °C for 24 h.

The block copolymers of PDMA-b-SPA were synthe-
sized by the solution of SA:PDMA:AIBN = 500:5:1
(molar ratio), methanol:distilled water (v/v) =2:1.5 as
solvent. The mixture was degassed by three freeze-
pump-thaw cycles. The ampoule was sealed under vac-
uum, immersed in an oil bath thermostated at 80 °C
for a predetermined time. Then, the ampoule was
opened; the reaction mixture was added into excess of
THEF, the copolymer was filtered and dried at 40 °C in
a vacuum oven for 12 h. Then, the copolymer was firstly
dialyzed in dilute sodium chloride solution, and then in
methanol with dialyzer (3500 molar mass). After evapo-
ration of methanol, the copolymer was dried at 40 °C in
a vacuum oven for 24 h.

2.4. Characterization

2.4.1. Nuclear magnetic resonance spectroscopy

'"H NMR spectra were performed in a Bruker
AVANCE300 NMR spectrometer, using CDClj; as sol-
vent for PDMA, tetramethylsilane (TMS) as internal
reference, and D,O as solvent for block copolymers.

2.4.2. Gel permeation chromatograph (GPC)

Molecular weight (M, gpc) and molecular weight
distribution (M,,/M,) of PDMA homopolymers were
obtained on a Waters 150C Gel Permeation Chromato-
graph (GPC) equipped with 10°, 10, and 10> A Waters
Ultrastyragel columns, using THF as the eluent at a flow
rate of 1.0 ml/min. The calibration was carried out with
polystyrene standards.
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2.4.3. Aqueous GPC

Aqueous GPC of copolymers was performed on a
Waters 2690 apparatus with two columns in series
(Waters Ultrahydrogel 250, 200) and a Waters 410
refractive index detector using 0.5 M acetic acid/0.5 M
sodium acetate as the eluent and poly (ethylene oxide)
as the standards. The flow rate was 0.50 ml/min.

2.4.4. Other analytical techniques

FT-IR spectra were recorded on Bruker Co. EQUR-
NOXS5S spectrometer. Elemental analysis experiments
were performed on Elementar Co. Vario EL III elemen-
tal analyzer.

2.4.5. Dynamic light scattering (DLS)

DLS were performed on a commercial laser light
scattering spectrometer (ALV/SP-125) equipped with
an ALV-5000 multi-tau digital time correlator and a
He-Ne laser (Uniphase, 22 mW at A=632.8 nm) at
25 °C. The scattering angle was 90°. The average hydro-
dynamic radius (R;) of the micelles was obtained by
cumulants analysis of the correlation function. The
polymer solutions in phosphate buffers with a concen-
tration of 1.0 mg/ml were filtered by a 0.8 um filter
before being analyzed.

2.4.6. Microcalorimetry

Thermal transitions of 1.0 mg/ml dilute phosphate
buffers of both PDMA homopolymers and PDMA-b-
SPA diblock copolymers were measured with a VP-
DSC from Mirocal Co. The heating rate is 1.0 °C/min.

3. Results and discussion

3.1. Synthesis and characterization of homo and block
polymers

CDB was selected for the RAFT agents as they have
been confirmed to be effective in polymerization of
methacrylate monomers [34,25,35]. Simultaneously,
one requirement for forming a narrow polydispersity

AB block copolymer in a batch polymerization is that
the first-formed polymeric thiocarbonylthio compound
should have a high transfer constant in the subsequent
polymerization step to give B block [25]. Therefore,
when we prepared a block copolymer, the methacrylate
block was prepared first. Fig. 1 is a 'H NMR spectrum
of a PDMA homopolymer. The peak at 7.86 ppm is the
characteristic signal of the two aromatic protons ortho
to the dithio group, indicating that RAFT agent moiety
remains at one end of the polymer. Results of the homo-
polymers are described in Table 1. The number average
molar masses M, nmr are calculated using the equation:

M, xvr = (1404/17.86) My + MyrarT (1)

where M,,,, Mg apT are the molar mass of monomer and
RAFT agent, respectively. Iyo4, 7536 are the integral
values of the peaks at ¢ =4.04 ppm and 7.86 ppm,
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Fig. 1. '"H NMR spectrum of PDMA homopolymer in CDCls.

Table 1

Conditions and results of the polymerization of DMA

Sample® RAFT agent Molar ratio® Conversion (%)° M, " (z/mol) M, nmr° (g/mol) M,,,GPCf (g/mol) M, IM,f
Ay CDB 160:1:0.1 86 21,153 10,570 1.14

A, CDB 140:1:0.1 84 15,658 7934 1.19

& Ay, Ay Poly[2-(dimethylamino)ethyl methacrylate (PDMA)] homopolymers of different number average molecular weight.

® The ratio DMA:RART agent:AIBN.

¢ Conv(%) = [I4.04/(I4.04 + 1424)] X 100%, where I, o4 and I, -4 are the integral values of the peaks at 6 = 4.04 (polymer O—CH,—) and

4.24 (monomer O—CH,—), respectively.
4 Calculated according to Eq. (2).
¢ Calculated according to Eq. (1).
! Measured by GPC.
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respectively. The theoretical values M, q, are calculated
based on the polymer yields, assuming that the RAFT
agents are reacted completely. The number average mo-
lar masses M,, 4, are calculated using the equation:

Mn.th = MRAFT + (Mm [M} Conv % /[RAFT] (2)

where [M]y, [RAFT]y, Conv (%), M,,, and Mgt are the
initial concentration of the monomer and RAFT agent,
fraction conversion, molar mass of the monomer and
RAFT agent, respectively. It shows that the polymers
have controlled molecular weight and narrow molecular
weight distribution. M, is a good agreement with
M, nmr, Which implies RAFT agent efficiency is very
high and each macromolecule almost contains the dithio-
benzoate group.

In the next stage, block copolymers were prepared by
RAFT polymerization of SA at 80 °C using the PDMA
homopolymers as the macro-RAFT agent. It has been
confirmed to be excellent that the block copolymers were
prepared utilizing the macro-RAFT agents [36,37]. The
well-defined diblock copolymers of PDMA-b-PSA
were successfully prepared. The processes are shown
in Scheme 1, and the results are shown in Table 2.
Fig. 2 is a "H NMR spectrum of diblock copolymer.
The block composition was determined using signals at
0 =4.04 ppm and 0.6-3.0 ppm, corresponding to ester
methylenes of PDMA and other groups of copolymer,
respectively. So the composition is determined using
equation:

PDMA I404/2
SPA [lo.e 30 — l—23'14,04] /3

3)

where [ is the integral of the signal. Table 3 is the results
of elemental analysis experiments. The contents of nitro-
gen element of the dried copolymers decreased with in-
crease of polymerization time. These suggested that
molar mass of SPA block increased with polymerization
time. Fig. 3 is IR spectra of polymers. Compared with
homopolymer, two strong absorption peaks at around

CH
H,C=C

3

COOCH,CH,N(CH,),

Table 2
A summary of results about the block copolymers
Sample*  Copolymer M,z (gimol) — M,/M,°
composition
(A:B)°
ABy 77:23 24,913 1.18
AB, 66:34 27,639 1.23
AsB; 77:23 18,384 1.19
ABy 58:42 23,332 1.23

% A1, Ay Poly[2-(dimethylamino)ethyl methacrylate (PDMA)]
fragments of different number average molecular weight, By, B,,
Bi, B4 Sodium polyacrylate (SPA) fragments of different
number average molecular weight.

® Calculated according to Eq. (3).

¢ Determined with "H NMR spectroscopy.

4 Determined by aqueous GPC.

b
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Fig. 2. "H NMR spectrum of diblock copolymer in D,O.
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Scheme 1. Synthetic pathways for the preparation of diblock copolymers via RAFT polymerization.
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Table 3
A summary of results about the polymers using element
analysis

Sample® Time (h)® N (%) C (%) H (%)
Ay 8.939 59.87 9.547
A B, 12 7.490 56.33 7.384
AB, 48 6.378 50.02 6.603
A, 8.950 60.75 9.688
A,Bs 12 7.362 55.89 7.576
AsBy 48 6.491 50.99 6.814

“ Ay, Ay: Poly[2-(dimethylamino)ethyl methacrylate (PDMA)]
fragments of different number average molecular weight, B,
B,, B3, B4 : Sodium polyacrylate (SPA) fragments of different
number average molecular weight.

® Polymerization time of sodium acrylate.

a homopolymer
b —— block copolymer

1604 —

1637 —
1390 —

T T T T T T T T T T T 1
3500 3000 2500 2000 1500 1000 500
Wavenumber cm’

Fig. 3. FT-IR spectra of homopolymer PDMA and A;B,
diblock polymer.

1604 cm~" and 1404 cm ™" appeared in the block copoly-
mer spectroscopy. This implied that the SPA segments
were formed in the block copolymer [38]. Simulta-
neously, good evidences for genuine block copolymer
formation were obtained from our studies of the self-
assembly of copolymers in solutions.

3.2. pH-dependent formation of micelles and reverse
micelles

Fig. 4 shows the dependence of the hydrodynamic
radius (Ry) of diblock copolymer on pH. It is agree-
ment with solubility curve presented by Cohen et al.
[39]. At pH values lower than 5.5, R, is 100-130 nm,
suggesting that core-shell micelles are formed. Simulta-
neously, an increase of pH toward the isoelectric point
(IEP, pH = 6.0) of copolymer in solution results in an
increase of Ry. It implies that the micelles swell or
slightly aggregate with reducing interactions between

500 -
400
300 IEP
—_ region
= J
£
o 2004
100 R °
0 T T T T T T
2 4 6 8 10 12
pH

Fig. 4. Hydrodynamic radius of the A;B, diblock copolymer
as a function of pH for concentration 1.0 mg/ml solutions
at 25 °C.

copolymers and solvent for gradually decreasing in
net charge density of copolymers (increase pH). Large
aggregates are formed at pHs around IEP of copoly-
mer, reflecting the phase separation of diblock copoly-
mer at a low interactions of copolymers with solvent
(low net charge density). At pH values a little higher
than the IEP region, Ry is 350-500 nm. These sizes of
Ry, are too large to represent simple core-shell micelles:
it is possible that compound micelles are formed under
these conditions [40]. R, decreases with increase of pH
above IEP, suggesting disaggregation of large com-
pound micelles with increase of the interactions of
copolymers with solvent (negative net charge density
increase). At extreme pH values (pH = 12.0 or 3.0) con-
sistency of micelles R}, values is observed, this can be
attributed to the approximate net charge density (posi-
tive or negative).

These experiments showed that the micelles and re-
verse micelles of the block copolymer formed in solution
and suggested that the self-assembly of the copolymers
in solutions are greatly effected by the net charge density
of the copolymers.

3.3. Temperature-induced phase separation of
copolymers [41]

Fig. 5 shows the effect of the SPA segments and pH
on the LCST of polymers in phosphate buffers. The tem-
peratures at maxima of microcalorimetry are referred to
as LCST of the polymers. Fig. 5 shows that the LCST
shifts from 74.4 °C to 79.8 °C with incorporation of
SPA at pH = 7.0. It describes that the LCST shifts to
a higher temperature with the incorporation of the
hydrophilic SPA. This is consistent with the phenomena
report for block PDMA copolymer [42]. On the other
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Fig. 5. Thermograms of solutions A; homopolymer and A,B,
diblock copolymer for concentration 1.0 mg/ml at 25 °C.

hand, it is well known that PDMA has a LCST at about
50 °C in water [43], but we observed it is about 75 °C in
buffer. It has been implied that LCST behavior is af-
fected by addition of phosphate in buffer. Coulombic
interactions of copolymer and solvent lead to better sol-
ubility of the polymer in buffer, so LCST increased.
With increasing temperature, the Coulombic interac-
tions weaken. When the temperature is above the LCST,
interactions between hydrophobic polymer groups
become dominant, which leads to hydrophobic polymer
collapse and phase separation.

4. Conclusions

Zwitterionic diblock copolymers with low polydis-
persities have readily been synthesized using RAFT
polymerization without protecting group chemistry.
Moreover, according to DLS and microcalorimetry
experiments, self-assembly of copolymer is observed: mi-
celles and reverse micelles are formed in buffer on adjust-
ing the pH and phase separation of polymers take place
in buffer on increasing temperature.

The zwitterionic triblock copolymers have been pre-
pared and can be expected to exhibit the richer solution
behaviors than the corresponding diblock copolymers
and their aqueous properties are being studied. The
detail reports will be submitted in the future.
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